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Abstract—With hundreds of millions of tweets being generated
by Twitter users every day, tweet analysis has drawn considerable
attention for event detection and trending sentiment indication.
The problem is finding the few important tweets in this huge
volume of traffic. A number of systems provide applications the
ability to filter a complete or partial Twitter stream based on
keywords and/or text properties to try to separate the relevant
tweets from all of the noise. Designing a filter to produce useful
results can be extremely difficult. For instance, consider the
problem of finding tweets related to the Target Corporation or
Guess USA. Just scanning the text of tweets for “target” or
“guess” is likely to generate lots of hits, but few really relevant
tweets. Nimbus is a service that can be used to tune filters on tweet
streams. The Nimbus service builds a database of tweets from
a Twitter stream (it does not have to be a full Twitter firehose)
and provides an API for testing filters (based on the PowerTrack
language and Spark as evaluation engine) against the database.
The important feature of Nimbus is that it allows repeatable
testing of filter expressions against real Twitter data using the
same filter language that can be used against live Twitter streams.
This makes it possible for users of the service to tune their filters
before putting them into production use.

I. INTRODUCTION

Hundreds of millions of new contents are created every

day on microblog services, e.g., Twitter tweets, Facebook

comments and Tumblr posts. Currently, Facebook has over

than 1.3 billion monthly active users and over 200 million

daily messages sent [1]. Twitter has 645+ million active users

who post more than 800 million daily Tweets [2]. In this paper,

we will focus on the problem of extracting useful data from

the avalanche of Twitter tweets.

Although this huge volume of streaming data is obviously a

potentially important information source for a lot of different

applications, a very important problems is how to find the

few important messages in this huge volume of unstructured

or semi-structured data. A number of systems provide ap-

plications the ability to filter a complete or partial Twitter

stream based on keywords and/or text properties. For instance,

GNIP provides its PowerTrack language to allow customers

the ability to filter tweets based on keywords, user attributes,

geo-location, and many others [3]. Much of the work in tweet

analysis has regarded the process of filter generation as a

“black box,” simply assuming the best set of keywords for

a stream filter is known a priori.

In fact, designing a filter to produce useful results can

be much more difficult than it looks at the first glance. For

instance, consider the problem of finding tweets related to the
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Target Corporation or Guess USA. Just scanning the text of

tweets for “Target” or “Guess” is likely to generate lots of hits,

but few really relevant tweets. A user might want to add more

keywords into the filter, such like “Target AND Supermarket”

or “Guess AND Clothing”. The reason that tuning a filter

is difficult is there are no obvious rules of thumb to follow.

So users frequently find themselves in one of two scenarios:

specifying a filter that either matches close to nothing or

one that matches almost everything (which turns into a self-

inflicted denial of service attack). To make the problem of

filter tuning even worse is that current services don’t provide

users the ability to do controlled experiments. For instance, to

test a filter using the Twitter Stream API, the user sees only

the current tweets that match the filter. If the user makes a

change to a filter, changes in the output reflect both the filter

modication and whatever has changed in the stream between

experiments – and the user has no way of distinguishing these

effects.

In this paper, we present Nimbus: a service for tuning filters

on tweet streams. Nimbus builds a database of tweets from a

Twitter stream and provides an API for testing filters against

the database. Nimbus adopts 1% tweets from Twitter stream

for “filter tuning” on a controlled basis. After modifying a

filter, the user can test it against the same data to validate the

change. Even better, Nimbus allows user to compare multiple

filters with the same data set at the same time, updating

the matched results and the hit ratios respectively during

filter evaluation. The design of Nimbus emphasizes the first-

matched response time (the response time between sending

a request and receiving the first match result) as well as

the completion time (the round-trip response time of request

being finished). We don’t want users to have to wait for the

completed results to understand how good their filters are.

Nimbus uses the GNIP PowerTrack language for filter

specification, so a user can directly apply a filter tuned with

Nimbus on a full Twitter firehose. The filter can be combined

of keywords and logical operators, including “AND”, “OR”

and “NOT”, and it also allows users filtering based on the

metadata, such as language and country code. For example, the

filter, “Adobe AND Photoshop lang:en”, specifies searching

the tweets which contain both “Adobe” and “Photoshop” and

use English as the language. Nimbus adopts Spark [4] as the

parallel evaluation engine and uses ZeroMQ [5] to stream

results from database to the client to minimize first-matched

response time. In addition, to avoid delays inserting tweets

from Twitter into the database, Nimbus uses Spark Streaming

to efficiently update the database in small batches of tweets [6].
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Generally, tweets appear in the database within a few seconds

of their publication.

The rest of the paper is organized as follows: An overview

of architecture of Nimbus is provided in Section II, followed

by the description of Nimbus’ features in Section III. We also

provide some performance figures in Section IV. Finally we

introduce related work in Section V, and conclude the paper

in Section VI.

II. SYSTEM OVERVIEW

Nimbus is the tuning filter service on tweets streams built

on top of a collection of open-source software, including

Spark, MYSQL, NodeJS, Spark JobServer and ZeroMQ. Since

it is specifically designed to help general users tune their filters

on tweets, Nimbus has implemented a few optimizations to im-

prove users’ experience. For example, after testing at Adobe,

we found in the most cases, users don’t need the completed

results to tell if their filters are good enough. Hence, rather

than focus on the completion response time of users’ requests,

Nimbus emphasizes the first-matched response time for users

from sending the requests and get the first matched tweet

instead. For instance, Nimbus uses Ooyala’s Spark JobServer

to save a few seconds by reusing Spark Context objects instead

of instantiating a new Context for every query. In addition,

Nimbus uses ZeroMQ to build the communication channel

between Spark Workers and the Web Server, so that the users

can receive the matched results as early as they are found.

These optimization may increase the completion response time

relative to simple batch processing, but it improves users’

experience by reducing the users’ waiting time for the first

match.

TABLE I: Hardware Specification for the performance evalu-

ation of Nimbus at Section IV

Item QTY Description
CPU 2 Intel Xeon E5-2650 v2 2.60GHz 8-core
Memory 8 MICRON 16GB DDR3 1600 ECC
Network 1 Integrated Gigabit LAN
HD 2 Seagate ST4000NM0033

SATA 6Gb/s 4TB 7200rpm Hard Drive
RAID 1 Integrated SATA RAID 0/1 Controller

In this section, we provide the overview of the system archi-

tecture of Nimbus. The hardware we use for the experiments

on Section IV is at Table I, while the software stack for

Nimbus is shown at Fig 1. Four kind of arrows are specified to

represent the transmission direction of synchronous requests,

data source, matched results and asynchronous request. Cur-

rently, Nimbus is running as a prototype on a single machine,

but it is designed to be scaled out in a cluster. In particular,

the use of Spark makes Nimbus easy to add more machines as

workers to improve the performance of filter evaluation. The

role of each software component are described as follows:

A. Twitter Streaming & Spark Streaming

Nimbus gets a randomly sampled 1% tweets from the full

Twitter Firehose. To alleviate the pressure of database for

Fig. 1: Software Stacks and Data Flow at Nimbus. Nimbus is

built on top of a collection of open-source software, including

Spark, MYSQL, NodeJs, Spark JobServer and ZeroMQ. Four

kind of arrows are specified to represent the transmission

direction of synchronous requests, data source, matched results

and asynchronous request.

writing coming tweets, Nimbus uses Spark Streaming [6] to

discretize the tweets stream into small batches; Nimbus then

inserts the batches into a MySQL database. The format of the

Tweet stream is a stream of JSON objects, as defined in [7]

Nimbus extracts some of the fields of the JSON, such as

the creation timestamp, the language of the text, and the geo-

information from the original tweet. This information is stored

as separate columns in the database (as well as being stored

in the JSON BLOB object). This allows some filters to be

partially executed by using the database, instead of parsing

each JSON tweet object. An experiment shows that using

the database incurs the interesting performance tradeoff: the

completion response time is reduced by more than 20% when

the matched data is scarce, but increases the performance

overhead when most of data are matched. We detail the

experiment in Section IV-B.

B. Web Server

The web server component of Nimbus adopts Node.js [8],

but it does not directly invoke the service backend to run

query jobs. Instead, when a job request arrives, it sets up a

channel for returning results to the client (using ZeroMQ) and

stores the request information in the database. The web server

receives query results from the various Spark worker instances

(again via a ZeroMQ channel [5]), and forwards them to client

as well as storing them in the file system. Saving the results in

the file system allows us to support “replay requests,” avoiding

the costs of rerunning an expensive query. The web server

assigns a unique string as the result identifier, selects a port

number for receiving results from the Spark query evaluation

engine, and inserts them together with the user’s request into
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Fig. 2: Screen Shot of Nimbus’ Web-UI. Nimbus supports at most three PowerTrack language and a “where filter” on the

metadata.Time range and number of matched results can be specified through the Web UI as well.

the database. The result identifier is used as the filename to

save the matched results in file system, and it’s also forwarded

to user so that user can review the result later or share with

others. The web server calculates some statistics, like the

total number of tweets evaluated already and the point-in-time

processing rate, which are also displayed for the user.

C. Storage System

Nimbus’ storage system uses both the database and file

system. MYSQL is used as the database platform to store

the both the tweets and users’ requests, while file system is

used to save the matched results for users to review or share

with others. Streaming tweets are stored as BLOB object with

corresponding metadata, like creation timestamp, language and

country code. Since Nimbus allows user reviewing or sharing

the past search results, the users’ request is also stored in the

database along with the statistics about its execution, such as

total of tweets evaluated. On the other hand, file system is

used to store the matched results for reviewing or supporting

asynchronous requests later. Files can be written to either the

local file system of the machine or to a shared file system like

HDFS.

D. Spark JobServer & Spark Cluster

As described above, the Web Server does not directly start

new query tasks – instead, it just writes the job information

in the database and sets up the channel for returning matching

results. The actual request invocation is handled by a daemon

process that scans the database for new requests and then starts

each request as a Spark job, using the Spark JobServer.

The query execution code is written in Scala. The job task

takes as input the query to be performed, the host and port

to which results are to be streamed, and a Spark Context.

The Spark Context is used to coordinate the execution of the

query among the Spark “master” and the collection of Spark

“workers” that comprise a Spark Cluster. Spark Contexts are

a little expensive to set up, so we use the Job Server to cache

Contexts between jobs. This makes job initiation somewhat

faster. Each job just applies a shunting-yard algorithm [9]

on each filter to produce prefix notation, and then executes

evaluation against tweets. This evaluation is done in parallel

across all of the workers in the cluster; each worker reports

matches to the Web Server as they are found using the ZeroMQ

channel set up for result return.

Spark was started as a research project focusing on big data

analytics at UC Berkeley [4]. Compared with MapReduce [10],

Spark is good at streaming applications that maintain aggre-

gated state over time because it supports low-latency data

sharing across multiple parallel operations. In Nimbus, the

Spark Master partitions the database and map each partition to

a Spark resilient distributed dataset (RDD), in this case a col-

lection of JSON objects. Each Spark Worker is responsible for

matching in one or more partitions and matches each tweet in

each partition with the user specified filters. When each match

is found, the worker sends it back to the WebServer on the

ZeroMQ channel. Each worker keeps its own statistics, such

as the number of tweets have been evaluated, and transmits

to Web Server periodically. These numbers are aggregated by

Web Server and updated to users, so that users can understand

the job processing status.

III. NIMBUS’ FEATURES

The goal of Nimbus is to make tuning of filters as efficient

as possible. Obviously one important aspect of efficiency is

filter matching performance over a large database. To this end,

we provide mechanisms to limit the tweets selected from the

database for match-testing; this includes selecting based on

metadata and time values. Also, since filter evaluation over

databases of hundreds of millions of tweets is going to be

time-consuming, the filter evaluation results are stored in files

and can be “replayed” by just presenting the request ID that

was generated when the request was first made; these replay

results can also be sorted by various criteria to make it easier

to understand the results.

The Web UI of Nimbus is as shown in Fig 2. Nimbus

allows users to search tweets using the PowerTrack language

for filter expression. The PowerTrack language is composed of

a set of keywords, logical operators, including “AND” “OR”

“NOT”, metadata filters like “lang:en”, and the parenthesized

expressions. Hence, users can look for what they want exactly
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by complex filters, such as “((happy OR party) (holiday OR

house) NOT(birthday OR democratic OR republican)) AND

lang:en”. In the Web UI, users are also able to use Power-

Track language to specify a “where filter” on the metadata.

This filter is applied as a SQL WHERE clause to filter the

database before doing detailed filter evaluation. The tradeoff of

performance for evaluation at different components, database

or Spark Cluster, will be discussed more at Section IV-B. In

addition, a time range can be specified through the Web UI by

choosing from built-in calendar or by short cut buttons; this

time range is also included in the WHERE clause used to “pre-

filter” the tweet database. Users are also able to limit the num-

ber of matched results return in case of being overwhelmed

by receiving thousands of matched results (the equivalent of

the SQL LIMIT clause). Moreover, every result is assigned

a unique result ID and shown on Web-UI as well. With the

result ID, users can review or even share the results without

rerun the query again. For these asynchronous queries, users

can also sort the results by some criteria, like timestamp or

number of retweets. We illustrate some of the most important

feature of Nimbus in the section in the following.
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Fig. 3: Over 42M tweets, “Photoshop” is mentioned about

three times as much as “Adobe” on tweets streams, while

about 25% tweets which contains “Adobe” also mentioned

“Photoshop” in the content.

A. Multiple filters one time

So far, Nimbus supports at most three filters for evaluation

at the same time, so that users can easily compare the

differences, such as hit ratios, among different filters. Besides,

to make users easily understand the current status of query

processing, Nimbus updates the statistical information every

500 millisecond. These information are listed by different

categories: overall information and respective information for

each filter. Overall information includes the total number of

tweets have been evaluated, the number of matched results

have been found, the overall hit ratio, and the point-in-time

evaluation rate, while respective information shows the number

of matched tweets and the hit ratio for each filter. For each

tweet which matches at least one of the filter, Nimbus shows

the image of user, the content of text, the match filter, and the

creation timestamp on Web-UI. These real-time information

help users tell if their filters are good enough as early as

possible; we would prefer not to have the users need the

completed results to make a decision.

For example, a user might be interested on the difference

among “Adobe”, “Photoshop”, and “Adobe AND Photoshop”.
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(a) Number of tweets mentioned “Adobe” in different languages.
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(b) The ratio of the popularity of Twitter for different languages among
English.

Fig. 4: Among 42M tweets, “Adobe” is mentioned the most by

English users and 10 times more in Japanese than in Spanish

in Fig 4a. Fig 4b shows the reason is the popularity of Twitter

varies in different regions.

By Nimbus, he/she can clearly tell “Photoshop” are mentioned

about three times as much as “Adobe” on tweets streams, while

about 25% tweets which contains “Adobe” also mentioned

“Photoshop” in the content. The number of matched tweets

over 42M for these three filters is shown in Fig 3. The

evaluation against three filters over 42M tweets takes less

than 30 minutes in our prototype implementation (which

has not gone through substantial performance tuning). More

detail about the performance of Nimbus will be discussed in

Section IV.

Since Nimbus implements the complete PowerTrack lan-

guage, users are not only able to tell the difference among

the sets of keywords, but also among the different metadata

filters. For instance, users could investigate among three

languages including English, Spanish and Japanese, in which

language Adobe is mentioned the most of time by keyword

“Adobe” with three language filters “lang:en” and “lang:es”

and “lang:ja” at Nimbus. We notice that although Adobe

happens to be the same spelling for Spanish, Japanese refer

to Adobe also in Kanji. We had tested Kanji in Nimbus but

nothing was found, so we decided to omit it. Besides, “Adobe”

is also an English word to represent a house made of earth/soil.

We did observe a tweet like “there is no life without adobe”,

which is hard to tell if the use referred adobe as a company

or the other meaning; however, we didn’t exclude it since it’s

a rare case. The study of telling the meaning of words is out

of the scope in this paper. Fig 4a shows the result for three

filters, “Adobe lang:en”, “Adobe lang:es” and “Adobe lang:ja”.

Among over 42M tweets, the keyword “Adobe” is mentioned

the most by English users, 669 time specifically. Interesting,

“Adobe” is mentioned 10 times more in Japanese than in

Spanish. Users might conclude that Adobe is drawing attention

in Japan than in Spanish-speaking countries. However, with the
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four company names among 1M tweets.
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(b) The first matched response time for searching
four company names among 1M tweets.
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(c) The number of matched results for different
company names among 1M tweets. Only 5 of 1M
tweets contains “VMware”.

Fig. 5: Nimbus evaluated 1M tweets against four company names: “Adobe”, “Google”, “Microsoft” and “Vmware”. Nimbus

finished the evaluation with 30 seconds, and it returned the first matched in two seconds in most of cases. Although only 5 of

1M tweets contains “VMware”, Nimbus demonstrated its efficiency by returning the first-matched tweet within 7 seconds.

filters “lang:en”, “lang:es”, and “lang:ja”, Nimbus shows the

reason of Fig 4a is actually because the popularity of Twitter

for different languages as shown in Fig 4b. The distribution

of Japanese and Spanish in Fig 4a approximately follows the

distribution in Fig 4b. But the hit ratio of keyword “Adobe”

is much higher in English than in Japanese.

With Nimbus, users are able to compare the difference

among at most three filters at the same time. Users can test

the different sets of keyword as shown in Fig 3, and they can

test the different metadata filters like Fig 4. Moreover, with

combined of the results of multiple filters against the same

dataset, Nimbus shows the potential as event detection or trend

analyzer on tweets streams.

B. Real-Time Update of the Tweet Database

Although the design of Nimbus doesn’t particularly focus

on the latency between when a tweet is created and when it

is searchable, Nimbus does provide “near real-time” updating

of the tweet database. The tweets from our 1% Twitter stream

are searchable in Nimbus within a minute of their creation.

This latency is introduced by our Spark Streaming code, which

batches the tweets every few seconds (there are generally a few

hundred in a batch), extracts some fields from original tweets

as metadata, and writes each batch into the database. Batching

the updates definitely helps improve the database performance

overall with only a small delay in seeing new tweets.

In general, Nimbus stores around 4M tweets in the database

everyday. Our plan is to keep at least three to six months of

tweets during the experimental phase of the project.

C. Sorting and Asynchronous Query

The queries mentioned above are synchronous queries, in

which users receive the matched results as soon as any can

be returned by the Spark Cluster. Nimbus also supports asyn-

chronous queries, where partial results can’t be immediately

returned. This allows us to adding sorting to the feature set.

If the client specifies a sort criterion in the Web UI, we take

advantage of the Query Replay mechanism (described below)

to collect results, sort them, and then make them available for

later retrieval.

The sorting feature takes advantage of Spark to do the

sorting across all of the worker nodes in the Spark Cluster

without having to write the non-sorted results to external

storage. The normal processing pipeline involves doing a

Spark “map” operation on the rows in the database (to record

which filters match the message), followed by a “filter” to

discard all the non-matching rows – the remaining rows are

returned to the client. To add sorting, all we need to do is to

add a Spark “sortByKey” to the pipeline to get the messages

sorted by the chosen key. And, after completing the sort, we

can then save the (sorted) results for replay.

D. Query Replay

Nimbus allocates a unique result ID for each user’s query.

The result ID will be recorded with user’s query together into

the database, so that users can review the results as well as the

query in the future. The result ID is used as the filename to

save the result in file system for asynchronous query later, and

it is also shown in Web-UI for users to review or share with

others. This feature is important especially when the query

is against a large dataset. Although Nimbus is equipped with

powerful query evaluation engine, approximately processing

40,000 tweets per second by 4 cores and 16GB memory, it

still takes minutes to finish the evaluation for millions tweets.

Since Nimbus continues to update the tweets database, the

completion response time will keep increasing as well. With

the feature to reviewing historical results, users won’t need to

rerun the query again to get the same results, and they can

also save other people’s time by sharing the results.

The results stored in file system as a file is not only includ-

ing the original JSON object, but also three letters to show

the evaluation results for three filters. The other information,

such as three filters, where constraint, selected time period,

total number of evaluated tweets, is stored in database with

the unique result ID together. With the stored information,

Nimbus is able to reconstruct the results in seconds as if user

executes the query again.

IV. PERFORMANCE EVALUATION &

OPTIMIZATION

In this section, we evaluate the performance of Nimbus by

different aspects. Currently Nimbus is running on a single

machine as we described in Table I, but it’s sufficient to

support tuning service with one percent tweets streaming data.

626627
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32% tweets for English case, while it receives less
than 1% tweets for French case.

Fig. 6: Performance comparison when language filters applied at database and spark respectively. Database can be efficient to

search the tweets by index if the density of target tweets is low. However, it introduces extra overhead if the density is high.

With the higher arrival rate of tweets in the future, Nimbus is

designed to run each component on individual machine and

connect with other components via connectors, such as JDBC

and ZeroMQ. Concretely, the following results show Nimbus

can provide high throughput and response time of the first

match in few seconds.

A. How Fast Can User Receive the First Match?

In our first experiment, we estimate the response time of

Nimbus with 1 million tweets under four different filters,

including “adobe”, “google”, “microsoft” and “vmware”. We

category two kind of response time: first matched response

time and completion response time. First matched response

time represents the time between the user issues a request and

receives the first matched result, while completion response

time represents the duration between issuing request and

receiving the completed results over 1 million tweets.

Fig 5a shows the completion response time for the four

filters with 1M tweets. As we can see, 1M tweets can be

evaluated around 23 seconds no matter what the distribution

of matched tweets is. Fig 5b shows the first matched response

time under the four different company name as the filters. The

first match of Google and Microsoft is returned within one

second, while the first match of Adobe is returned within 1.5

second. However, the first matched response time of VMware

is at least 4 times than the other companies. With more

investigation, we found the first matched response time is

highly correlated with the number of matched tweets existing

in 1M tweets. Fig 5c shows the number of matched tweets in

these 1M tweets. Although Nimbus can evaluate thousands of

tweets per second, but since the tweets mentioned VMware is

few, Nimbus still takes time to find the first match.

B. Does Pre-stored Metadata help Performance?

In the second experiment, we estimate the performance

tradeoff between two different language filters applied at

database and spark respectively over 10M tweets. Since Nim-

bus preprocesses the streaming tweets and stores associated

metadata, such as language and country code, with JSON

objects in the database, it provides two timing to filter to

apply language filter on the tweets. One is to use metadata

in database, another one is to evaluate in Spark Cluster. In

this experiment, we test these two approaches with the same

keyword “Adobe” but two language filters, English and French,

and the results show interesting performance tradeoff in Fig 6a

and Fig 6b. To utilize the index feature, we build an index on

language column in database.

Fig 6a shows doing language evaluation at Spark Cluster

is faster than doing it at database, while Fig 6b shows the

opposite trending. We believe the reason of the interesting

performance difference is the density of matched tweets in

database. Fig 6c shows the number of tweets is evaluated at

Spark Cluster for different scenarios. Without the database

filtering the tweets first, all of the 10M tweets would be

sent to Spark Cluster for filter evaluation in both cases. If

we choose to use database to filter the language first, Spark

Cluster receives 32% tweets when English as language filter,

while it receives less than 1% tweets when French as language

filter. These results shows database approach can be efficient

to search the tweets by index if the density of target tweets

is low. However, it introduces extra overhead and hurts the

performance if the density is high.

C. How to Partition Database to Improve Performance?

One of the important ways to speed up processing in a

Spark cluster is to improve the parallelism among the workers

– the more you can keep all the workers busy, the better

the performance will be. In the case of Nimbus, one way to

improve parallelism is to increase the number of “database

partitions.”

In Spark, a “resilient distributed dataset” (RDD) can be split

into multiple partitions. The Spark driver will schedule work-

ers to handle partitions in parallel to improve performance.

In the case of Spark RDDs that are backed by a database,

partitions can be created by spliting the key values for the

rows into equal-sized buckets – each partition corresponds to

all the rows with keys in the corresponding bucket. In the case

of Nimbus, we have an auto-incremented ID field as the key

for each tweet stored, so it is easy for us to create as few or

as many partitions as we want.

In this experiment, we varied the partition from 2 to 22

against 5M tweets to see if the number of partition is a

factor for Nimbus’ performance. We loaded these 5M tweets

into the cache memory of database first to avoid the Disk

IO bottleneck. From the results shown in Fig 7a, we found

that increasing the number of partition can really improve the
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Fig. 7: The response time decreases 84% when the number

of partition increases from 2 to 22 in Fig 7a. In unbalanced

data distribution scenario, the response time are reduced 75%

for 70% data selected by database and 43% for 10% case in

Fig 7b.

performance by parallel evaluation processing until the system

is saturated, which is around 16 partition in this case.

This corresponds well with the general guidelines for

writing Spark applications, which suggest using as many

partitions as possible until the overhead (in particular, network

communication) of running a task on a partition becomes

significant relative to the actual processing done for the

partition. Sixteen partitions of 5M tweets means an average

partition size of around 300K tweets/partition – having more

partitions just drops the processing costs so that the overhead

begins to dominate. We are also generally running a four-

worker configuration, which means that at 16 partitions we

get an even split of partitions/worker.

Another benefit of database partition is that it mitigates

the performance degradation when the distribution of data is

not uniform. At Nimbus, the database is partitioned based on

assigned id equally. However, since Nimbus filters the data

with metadata first, each partition probably receives different

number of tweets from database. In this case, the completion

response time is decided by the partition with the most

tweets. In this experiment, we estimate if the performance

can be improved by increasing the number of partition at the

unbalance data distribution scenario. Specifically, the database

evaluates 10M tweets, and only the first n% tweets are sent

to Spark Worker for filter evaluation since the metadata meet

user’s query. In this case, some partitions receives a lot of

tweets, while the others receives zero. In this experiment, the

threshold is set at 10% and 70% respectively to cover different

cases, since we have understood Nimbus’ performance is

affected by the threshold from Section IV-B. According to

the result in Fig 7b, we found out increasing partition helps

system improve the performance when the distribution of data

is unbalanced. Concretely, the completion response time is

reduced at most 75% for 70% threshold and 43% for 10%

threshold when the number of partition increases from 4 to

24.

V. BACKGROUND AND RELATED WORK

A. Search on Tweets

Compared with web searching, people are inclined to search

micro-blogging social media for temporally relevant infor-

mation, such as breaking news and popular trend [11]. The

challenge of searching on this kind of service, like Twitter,

is thousands of concurrent users may tweet simultaneously.

Hence, it’s important to process new content quick enough to

make them be available for searching shortly after creation. A

lot of efforts have been made for real-time search service on

tweets to enable users to know what’s happening right now in

the world.

For example, Nimbus can be used to pre-filter data from

Social Networks by LITMUS [12], a landslide detection

service based on physical sensors and social networks. Starting

with labeling data via its own filtering component, LITMUS

identifies the relevance of data items and applies machine

learning classification to recognize landslide as a natural

disaster. Since Nimbus can efficiently handle large amounts

of incoming data and supports complex filtering, then it is an

obvious choice that will improve LITMUS performance.

Twitter’s Earlybird provided real-time search service in

which tweets were searchable within ten seconds after creation

without consideration of ranking [13]. Earlybird improved the

efficiency of inserting new tweets by limiting the scope of

index updated and using a single-writer multiple-reader lock-

free model. Based on Earlybird, Twitter introduced real-time

related query suggestion and spelling correction service to

provide the relevant results of breaking news events within

minutes [14]. The paper also described the problems of using

Hadoop for low-latency processing on big data, which inspired

Nimbus using Spark as in-memory processing engine [4].

Rather than returning the top K tweets, Log-Structured

Inverted Indices (LSII) maintained a sequence of inverted

indices with exponentially increasing size to guarantee the

completeness of query results [15]. New tweets are first

inserted into the smallest index and moved to the larger indices

later in a batch manner. Nimbus is designed to return the

full set of query results to the users without considering any

ranking, but it also allows users sorting the results by specified

criteria.

B. Query Language on Tweets

Keyword matching is the mainstream method for real-time

microblog searching [16] [13] [15], despite the difference on

accuracy, ranking function and memory management. Because

of the very high arrival rate in microblog services, a lot of

works focus on spatio-temporal queries over [17] [18]. Includ-

ing associated geo-location, created timestamp, as well as text

description, spatial-temporal keywords queries return top‘k
relevant results. Recently, Chen et al. proposed a benchmark
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and provided an empirical study to evaluate twelve spatial

keyword query performance [19].

On the other hand, other researches investigated the pos-

sibility to utilize RDBMS on semi-structured JSON objects.

TweeQL is a SQL-like query language interface to generate

structured data from unstructured tweets [20]. Users are able

to issue SQL-like query with keyword, location, or userid

filters on top of Twitter Stream API and receive match results.

Moreover, Chasseur presented an automated mapping layer for

storing JSON data in a relational system [21], while Liu et al.

explored the principles to manage JSON data in RDBMS [22].

These works offer significant benefits to application developers

as they can use SQL to query both relational and JSON data.

Nimbus chooses to implement PowerTrack language [3],

including keywords, logical operators and tagged metadata,

rather than SQL. Twitter acquired Gnip in April, 2014 [23],

so it’s likely that PowerTrack will become the filter language

for Twitter API in the future. This made it a natural choice

for Nimbus.

VI. CONCLUSION & FUTURE WORK

In this paper, we have described Nimbus, a service for

tuning the filters used to extract useful information from the

mountain of Twitter tweets generated every day. The design

of Nimbus was based on some simple observations:

1) To make “filter tuning” practical, the filter language used

by Nimbus had to be precisely the same “production”

language used to filter a full Twitter Firehose. Thus,

Nimbus implements the full GNIP PowerTrack language

and exposes PowerTrack explicitly through our Web UI.

So we can reasonably promise that “what you see should

be what you get.”

2) Because any kind of testing on tens or hundreds of

millions of tweets is going to be expensive, the service

needs to be carefully designed to be responsive. When

testing a filter, results should be returned as quickly as

possible (so a user can terminate a test as soon as the

results are obvious). And keeping past test results around

for doing efficient replay is a necessity.

3) Because we’re interested in building a service managing

large amounts of data and handling many users, it needs

to be built from loosely coupled components that can

be independently scaled. Spark is an important part

of the design because it allows us to easily spread

processing load across as a potentially large cluster while

maintaining the responsiveness the service requires.

Our current prototype, as described above, shows the

promise of the design. It would be relatively easy to extend

the PowerTrack language to allow keyword specifications to

also include a part of speech and to hook up our Spark filter

evaluation engine to a syntactic analyzer to get part of speech

information as part of filter evaluation. One obvious concern

is the implications for performance and responsiveness, which

will be a critical part of any extension we make along these

lines.
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