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Abstract—The use of Social Media for event detection, such
as detection of natural disasters, has gained a booming interest
from research community as Social Media has become an
immensely important source of real-time information. However,
it poses a number of challenges with respect to high volume,
noisy information and lack of geo-tagged data. Extraction of
high quality information (e.g., accurate locations of events)
while maintaining good performance (e.g., low latency) are the
major problems. In this paper, we propose two approaches
for tackling these issues: an augmented Explicit Semantic
Analysis approach for rapid classification and a composition of
clustering algorithms for location estimation. Our experiments
demonstrate over 98% in precision, recall and F-measure
when classifying Social Media data while producing a 20%
improvement in location estimation due to clustering composi-
tion approach. We implement these approaches as part of the
landslide detection service LITMUS, which is live and openly
accessible for continued evaluation and use.

Keywords-landslide detection service; semantic relatedness;
clustering composition; social media; event detection

I. INTRODUCTION

LITMUS uses the following set of keywords to extract
the data from Social Media related to landslides: landslide,
mudslide, rockslide, rockfall, and landslip. Here is an exam-
ple of a relevant data item returned by the Twitter Streaming
API1 that contains information regarding a recent event in
Indonesia:

• “Indonesia rescuers use earth-movers in landslide res-
cue as toll rises to 24: JAKARTA (Reuters) - Indone-
sian. . . http://t.co/2Vk2k0gObu”

However, most of the data returned by social information
services are irrelevant to landslide as a natural disaster. The
following are frequent examples of irrelevant data items
from Social Media that we consider as noise:

• landslide as an adjective describing an overwhelming
majority of votes or victory: “The Bills held P Manning
to 57 rating today in Denver - worst this year by a
landslide - only game without a TD pass this year.”

• landslide as the Fleetwood Mac song “Landslide” from
the 1975 album Fleetwood Mac: “But time makes you
bolder•Even children get older•And I’m getting older

1https://dev.twitter.com/streaming/reference/post/statuses/filter

too. -Fleetwood Mac #landslide #dreams #gypsy #fleet-
woodmac #onwiththeshow #thegrouch #eligh #music
#family #longhairdontcare #theforum #california”

• mudslide as a popular cocktail: “The best dessert I
found at Brightspot yesterday, not too sweet! @creamy-
comfort #baileys #dessert #mudslide #brightspot
brightspot”

One of the trivial approaches for finding irrelevant items
is based on the presence of specific words in the items’
texts, including election, vote, fleetwoodmac or specific
phrases from song lyrics. However, even after applying this
labeling technique, many unlabeled items remain that require
a more sophisticated labeling approach as demonstrated in
this tweet:

• “A serious breakdown of the numbers shows the
better player is Michael Jordan. In a landslide.
http://53eig.ht/1GvjDT1”

[1] suggested to employ a machine learning technique
called text classification to automatically label each tweet as
either relevant or irrelevant to a disaster event, such as earth-
quake. A research in natural language processing has found
Explicit Semantic Analysis (ESA) to be successful for text
classification [2]. However, the ESA algorithm relies heavily
on leveraging existing knowledge of Wikipedia, which is
very time-consuming and parts of it may be irrelevant for our
purpose. Hence, the first contribution of this paper is rapid
classification by augmenting ESA, such that instead of using
all concepts from Wikipedia articles, we determine a subset
of concepts based on a training set that allows us to rapidly
classify Social Media texts while leveraging the capabilities
of ESA as a superior text classifier. Our augmented ESA
approach allows a user to rapidly classify unstructured texts,
such that a preprocessing step is more than 7 times faster
and throughput is an order of magnitude faster compared to
the original ESA approach.

Not only the data from Social Media contain a lot of noise,
but most of the data do not have geo-location either [3]. A
common approach for geo-tagging such data is to look for
mentions of places in Social Media texts using a gazetteer
[4] or a named entity recognition (NER) approach, which
generates fewer irrelevant locations [5]. However, even the
NER based approach may extract incorrect locations. Con-



Figure 1. System Pipeline

sider the following tweet that was posted in December 2014:
• “On the Front Page of Personal Thailand Search for

survivors begins after Indonesia landslide kills 18,
leaves 90... http://t.co/bcwUzWNqmb”

The NER library incorrectly extracts Thailand as the
location entity for this tweet, which is an outlier as the
location for majority of tweets regarding the disaster event
in Indonesia is determined correctly. That is why we propose
to cluster Social Media texts based on semantic clustering
and to find location outliers for each such cluster.

A further challenge in identifying locations of the detected
events is that a single event may comprise multiple locations,
which is important to address in order to avoid reporting the
same event multiple times. Consider the following tweets
mentioning locations affected by mudslide:
• “#LosAngeles News Amid Mudslide Concerns,

Glendora Residents Prepare for More Rain: ...
http://t.co/VhwIlQ6nCC”

• “Mudslide covers yard of an evacuating resident in
Azusa, CA. Taken by @smasunaga: ”This is a regu-
lation hoop” http://t.co/xuhVVrHLbx”

Glendora2 and Azusa3 are neighboring cities in California
that were affected by the same mudslide event, which
is why we propose that outlier removal using semantic
clustering should be followed by Euclidean clustering, such
that locations that are in close proximity to one another are
grouped into one cluster. Thus, the second contribution of
this paper is that a composition of clustering algorithms is
needed for accurate estimation of locations of the detected
events. Based on our knowledge, this is the first work that
employs a composition of clustering algorithms to accurately
estimate geographic locations based on unstructured texts.

The rest of the paper is organized as follows. We describe
the details of system components in Section II followed

2http://cityofglendora.org/about-glendora
3http://www.ci.azusa.ca.us/index.aspx?nid=569

by implementation notes in Section III. In Section IV we
present an evaluation of system components using real
data and compare detection results generated by LITMUS
with an authoritative source. We summarize related work in
Section V and conclude the paper in Section VI.

II. SYSTEM DESCRIPTION

LITMUS performs a series of processing steps before
generating a list of detected landslides - see Figure 1 for
an overview of the system pipeline.

LITMUS starts by collecting the data from multiple
social and physical information services. The data collection
component currently supports the seismic feed from USGS,
the rainfall reports from the TRMM project, and the global
landslide hazards map by NGI as its physical sources; as
well as Twitter, Instagram and YouTube as its social sources.

The data from Social Media requires additional processing
as it is usually not geo-tagged and contains a lot of noise.
Hence, LITMUS attempts to determine the relevance of the
social items to landslide as a disaster and labels the items
accordingly. This is performed using labeling based on the
presence of stop words and phrases in the items’ texts.
It is followed by classification based on augmented ESA
approach on the remaining unlabeled items. Next LITMUS
applies the geo-tagging component based on NER and
estimates event locations using a composition of clustering
algorithms.

The final component considers each cluster as a poten-
tial event and computes its landslide probability using a
Bayesian model integration strategy.

The following subsections provide implementation de-
tails of the system components. Classification based on
augmented ESA as well as location estimation based on
clustering composition are the paper’s main contributions,
which is why they are described in separate sections for
clarity.



S1. Data Collection

LITMUS collects data from both physical and social
information services. Physical services alone are not suf-
ficient as there are no physical sensors that would detect
landslides directly. However, they can detect potential causes
of landslides, including earthquakes and rainfalls.

The seismic feed is provided by the United States Geo-
logical Survey (USGS) agency [6]. USGS supports multiple
feeds of earthquakes with various magnitudes. The data is
provided in a convenient GeoJSON format4, which is a
format for encoding a variety of geographic data structures.
LITMUS uses a real-time feed of earthquakes with 2.5
magnitude or higher that gets updated every minute.

The rainfalls data is available due to the Tropical Rainfall
Measuring Mission (TRMM) [7]. TRMM is a joint space
project between NASA and the Japan Aerospace Exploration
Agency (JAXA). The mission uses a satellite to collect data
about tropical rainfalls. TRMM generates various reports
based on its data, including a list of potential landslide
areas due to extreme or prolonged rainfall. In particular, it
generates reports of potential landslide areas after 1, 3, and
7 days of rainfall collected by LITMUS.

In addition to the described physical information services,
LITMUS also collects data from social information ser-
vices, including Twitter, Instagram and YouTube. There is
a separate data collection process based on the capabilities
provided by each information service.

Among the currently supported data sources, Twitter has
the most advanced API for accessing its data. In particular,
it provides a Streaming API, which returns tweets in real-
time containing the given keywords. This is implemented by
connecting to a public stream provided by Twitter whereby
tweets matching one or more keywords are returned in
real-time. The connection is long-lived and held by Twit-
ter servers indefinitely barring server-side error, excessive
client-side lag or duplicate logins among other reasons.

Both YouTube and Instagram provide a pull type of API
that LITMUS uses to periodically download items contain-
ing landslide keywords. This approach requires developers
to implement a mechanism that avoids data duplication in
the system. LITMUS uses item IDs to make sure there are
no duplicates.

Finally, LITMUS incorporates another physical informa-
tion source, which is a static map of areas on the planet
that are likely to have landslides [8]. It is a 2.5-minute5 grid
of global landslide and snow avalanche hazards based upon
the work of the Norwegian Geotechnical Institute (NGI).
This dataset is based on a range of data including slope,
soil, precipitation and temperature among others. The hazard
values in this source are ranked from 6 to 10, while the
values below are ignored.

4http://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php
5http://education.usgs.gov/lessons/coordinatesystems.pdf

S2. Labeling based on Stop Words & Phrases

As we mentioned earlier, there are several common irrele-
vant topics discussed in Social Media that are easy to detect
due to the use of specific words, including election, vote and
fleetwood, or the use of the lyrics from popular rock songs to
describe a user’s mood at the moment - see [5], [9] for exam-
ples from Social Media. Stop words and phrases are easy to
understand and fast to execute. Hence, LITMUS attempts to
label items from Social Media using stop words and phrases
before applying classification algorithm described next. The
reason why we label items instead of removing them is
because we want to penalize candidate landslide locations
whose majority label is negative. For detailed description of
the penalized classification approach we refer the reader to
[5].

S3. CLASSIFICATION BASED ON AUGMENTED ESA
In [2] Gabrilovich, et al. described Explicit Semantic

Analysis (ESA) approach and used it for text categorization
as well as for computing the degree of semantic relat-
edness between fragments of natural language text. ESA
represents the meaning of any text in terms of Wikipedia-
based concepts. Concepts are the titles of Wikipedia articles
characterized by the bodies of those articles. In ESA a word
is represented as a column vector in the TF-IDF table (table
T) of Wikipedia concepts and a document is represented
using its interpretation vector, which is a centroid of the
column vectors representing its words. An entry T [i, j] in the
table of size N×M corresponds to the TF-IDF value of term
ti in document dj , where M is the number of Wikipedia
documents (articles) and N is the number of terms in those
documents.

The ESA approach proved to successfully measure se-
mantic relatedness [2], but it requires a substantial amount
of computation in order to build the semantic interpreter.
The ESA authors reported that it took 7 hours to parse
a complete XML dump of Wikipedia back in 2009 [2],
whereas the number of articles in Wikipedia only increased
since then. We propose to augment the ESA approach to
rapidly classify the texts of Social Media items as either
relevant or irrelevant. Rapid classification is achieved by
reducing the number of Wikipedia concepts to consider as
follows.

Given a training dataset we propose to group similar items
using a clustering algorithm, such as K-means. For each such
cluster the top N terms are selected next based on their TF-
IDF values. Using the selected terms as Wikipedia concepts,
the ESA method can then be applied to build table T also
referred to as an inverted index. Inverted index is used to
generate values of the interpretation vectors for each text in
the training dataset. These rows of vector values are used
by a classifier to build a model, which can be utilized to
predict relevance of social items. For each social item’s text
an interpretation vector is computed using the inverted index



Figure 2. Classification based on augmented ESA

and its relevance label is predicted using the classifier’s
model - see Figure 2. The dataset collection is described
in Subsection IV-A.

In addition to using a subset of Wikipedia concepts for
rapid computation, we also described how to use interpre-
tation vector values for classification purposes. The original
ESA approach uses a bag of words (BOW) approach in
conjunction with the top 10 concepts of all the interpretation
vectors. Classification based on interpretation vector values
represents a bag of concepts (BOC) approach, because the
dimensions in those vectors are Wikipedia concepts. This
method fully utilizes the strengths of the ESA approach, be-
cause all of the selected concepts are used for classification
purposes instead of their subset [2].

S4. LOCATION ESTIMATION BASED ON CLUSTERING
COMPOSITION

A. Location Estimation Using Semantic Clustering

Majority of items from Social Media do not have geo-
location, although each of the supported social sources,
namely Twitter, Instagram and YouTube, allow users to
disclose their location when they send a tweet, post an image
or upload a video. For example, only 0.8% of tweets have
geo-location in our evaluation dataset - see Table I. That
is why LITMUS contains a geo-tagging component that
attempts to determine the locations of the discussed events
by looking for mentions of places in the textual description
of the social items. Then it assigns geographic coordinates
based on the found geo terms.

In order to find mentions of places in the texts, LITMUS
employs an NLP technique called named entity recognition
(NER). This technique attempts to recognize various enti-
ties in a text, including organizations, persons, dates and
locations. We are interested in the location entity for geo-

tagging purposes. Once location entities are determined, we
can use Google Geocoding API [10] to obtain corresponding
geographic coordinates.

LITMUS utilizes Stanford CoreNLP library, which is a
Java suite of NLP tools [11], to identify all location entities
mentioned in Social Media texts. However, the CoreNLP
library occasionally extracts incorrect entities. Consider the
following tweet that was posted in December 2014:
• “DTN Mongolia: At least 24 dead in Java landslide: A

landslide destroyed a remote village in Java, Indonesia,
k... http://t.co/mQUGKYSxWZ”

The NER library incorrectly extracts Mongolia as the
location entity for this tweet. This is an outlier as for most
tweets regarding the disaster event in Indonesia, the library
extracts correct geo-terms. That is why we propose to cluster
social items based on semantic distance and for each cluster
to find such outliers, such that if an overwhelming geo-term
exists in a cluster then the location for all social items in the
cluster is set to that geo-term. In this particular example, the
overwhelming geo-term in the cluster to which these tweets
belong to is Indonesia, that is why the location for this tweet
is reset by LITMUS accordingly.

B. Location Estimation Using Euclidean Clustering

In order to estimate locations of landslide events based
on data from multiple information services, originally we
employed a cell-based approach [9]. The surface of the
Earth was represented as a grid of cells and each geo-tagged
item was mapped to a cell in this grid based on the item’s
geographic coordinates.

Obviously, the size of these cells is important. The smaller
the cells, the less the chance that related items will be
mapped to the same cell. But the bigger the cells, the more
events are mapped to the same cell making it virtually

Social Media Raw Data Data geo-tagged by user Data geo-tagged by LITMUS

Twitter 149798 1242 (0.8%) 55054 (36.8%)
YouTube 6533 416 (6.4%) 2749 (42%)
Instagram 4929 788 (16%) 1139 (23.1%)

Table I
OVERVIEW OF EVALUATION DATASET



impossible to distinguish one event from another. The size
we used was a 2.5-minute grid both in latitude and longitude,
which corresponds to the resolution of the Global Landslide
Hazard Distribution described earlier. That was the maxi-
mum resolution of an event supported by the system.

The formulas to compute a cell’s row and column based
on its latitude (N) and longitude (E) coordinates are as
follows:

row = (90◦ +N)/(2.5′/60′) = (90◦ +N) ∗ 24 (1)

column = (180◦ + E)/(2.5′/60′) = (180◦ + E) ∗ 24 (2)

For example, Banjarnegara whose geographic coordinates
are N = -7.3794368, E = 109.6163185 will be mapped to
cell (1983, 6951).

However, a problem with the integration of multiple
sources based on cell-based approach is that locations be-
longing to the same event may be mapped to different cells.
This leads to incorrect conclusion that there are multiple
events instead of a single one. Consider the following tweets
that were posted in December 2014:

• “One village in central Java Banjarnegara Buried land-
slide - Bubblews http://t.co/iCLRVNNcpG via @GoB-
ubblews”

• “#UPDATE: 12 dead,100 others missing in Jemblung,
Indonesia after a landslide was triggered by torrential
downpours http://t.co/Npweb5VveG”

The NER library extracts location entity Banjarnegara
for the first tweet, which is mapped to cell (1983, 6951),
and location entity Jemblung for the second tweet, which is
mapped to cell (1985, 6953). Although the cells are different,
but the described event is the same6. Jemblung is a village in
Banjarnegara regency of Central Java province in Indonesia.
These two places are geographically located inside one
another even though they are mapped to different cells based
on their geographical coordinates. That is why we propose
to cluster social items based on Euclidean distance instead
of solely relying on the cell-based approach to make sure we
do not report the same event multiple times. This approach
will map tweets that are in close proximity to one another
to the same cluster. However, a large number of items from
social and physical information services will slow down the
execution of a clustering algorithm. For example, our eval-
uation dataset in December 2014 contains 42k geo-tagged
social items. That is why instead of clustering individual
items based on their geographic coordinates, we propose to
cluster their cells. The total number of candidate cells during
the evaluation period is 539, which is significantly less than
the number of geo-tagged items. Cells are defined by (row,
column) positions that we treat as (X, Y) coordinates for the
clustering algorithm based on Euclidean distance.

6http://news.xinhuanet.com/english/world/2014-12/13/c 133851351.htm

S5. EVENT DETECTION

After all potential event locations are estimated using
the clustering composition approach described earlier, we
compute the probability of landslide occurrence in those
locations based on a Bayesian model integration strategy.
For detailed description of the event detection component
and how the data from both physical and social sources are
fed into LITMUS we refer the reader to [5], [9].

III. IMPLEMENTATION DETAILS

The texts of Social Media items in the evaluation dataset
of December 2014 were grouped into 500 clusters using
K-means. For each cluster the top 10 terms based on their
TF-IDF values have been selected. The top terms from all
clusters have been added to a set and the number of distinct
terms in this set is equal to 714. These terms are treated
as Wikipedia concepts from this point on. Clustering of the
texts in the evaluation dataset is not time-consuming as it
contains only 161,260 items.

Unlike the original ESA approach, there is no step of
parsing Wikipedia XML dump as the subset of Wikipedia
concepts to be used is predetermined using the K-means
clustering approach described above. Thus, the contents of
only 714 Wikipedia articles are used to build the semantic
interpreter. Building the semantic interpreter is a one-time
operation that takes less than an hour, which is much faster
than the 7 hours reported for the original ESA approach.
After the semantic interpreter is built, the generation of
interpretation vectors for textual input is several thousand
words per second, which is an order of magnitude faster
than the original ESA approach [2].

For evaluation of classification performance we used
Weka [12], which is an open source suite of machine
learning software written in Java. Weka’s implementation
of C4.5 algirthm is called J48.

Computations of semantic distance as well as Euclidean
distance based clustering were performed using the im-
plementation of agglomerative clustering in SciPy [13]. It
clusters observation data using a given metric in the N×M
data matrix, where N is a number of observations and M
is a number of dimensions. The observation data for seman-
tic clustering are interpretation vector values whereas the
observation data for Euclidean clustering are (row, column)
positions of the cells.

Both clustering and classification processes are fast to
execute because we only consider geo-tagged items as op-
posed to a complete set of data. In addition, the classification
process uses a pre-built model based on training data to
classify incoming items and the number of features is only
714.

IV. EVALUATION USING REAL DATA

In this section we analyze LITMUS performance using
real-world data during the evaluation period. In particular,



Classifier Precision Recall F-Measure Class

Naı̈ve Bayes
0.902 0.847 0.874 relevant
0.281 0.395 0.328 irrelevant
0.821 0.787 0.802 (weighted avg.)

C4.5
0.989 0.992 0.991 relevant
0.949 0.930 0.939 irrelevant
0.984 0.984 0.984 (weighted avg.)

Table II
OVERVIEW OF CLASSIFICATION RESULTS

Locations based on Locations based on Locations based on Locations based on
NER cell-based approach semantic clustering Euclidean clustering

Locations 684 539 509 493

Table III
EVALUATION OF LOCATION ESTIMATION

we provide three sets of experiments designed to evaluate
the system components described in the paper. We start with
the results of classification of individual items from Social
Media based on semantic relatedness to Wikipedia concepts
using Naı̈ve Bayes and C4.5 classifiers. Next we describe
the preliminary results of landslide detection by LITMUS
and compare them with an authoritative source. Finally, we
provide location estimation results using clustering compo-
sition approach and demonstrate the improvements made in
estimating the actual number of detected events unreported
by the authoritative source.

The experiment on evaluation of the actual thresholds used
by the clustering algorithms is omitted due to lack of space.
Also, we did not include comparison of classification results
based on augmented ESA approach versus original ESA,
because we were unable to compute a semantic interpreter
using the latest Wikipedia XML dump within a reasonable
amount of time.

A. Dataset Description

We select the month of December 2014 as the evaluation
period. Here is an overview of the data collected by LITMUS
during this period - see Table I. Majority of items in each
social source do not contain geo-location, which is why we
apply the geo-tagging component.

In order to collect the ground truth dataset for the evalua-
tion month, we consider all items that are successfully geo-
tagged during this month. For each such geo-tagged item,
we compute its cell based on its latitude and longitude val-
ues. All cells during the evaluation month represent a set
of candidate events. Next we group all geo-tagged items
from Social Media by their cell values. For each cell we
look at each item to see whether it is relevant to landslide
as a natural disaster or not. If the item’s text contains a

URL, then we look at the URL to confirm the candidate
item’s relevance to disasters. If the item does not contain a
URL, then we try to find confirmation of the described event
on the Internet using the textual description as our search
query. If another trustworthy source confirms the landslide
occurrence in that area then we mark the corresponding cell
as relevant. Otherwise we mark it as irrelevant. A cell is
thus relevant if at least one social item mapped to that cell
is relevant, whereas the cell is irrelevant if all of its social
items are irrelevant. It should be noted that we consider all
events reported by USGS as ground truth.

B. Evaluation of Classification based on Augmented ESA

For evaluation of classification performance we used two
algorithms: Naı̈ve Bayes and C4.5.

Naı̈ve Bayes was chosen as it is a commonly used baseline
classifier algorithm. It remains popular despite its strong
(naive) independence assumptions between the features.
One of the main advantages of this algorithm is its high
scalability and it has shown good performance in various
complex real-world situations.

C4.5 is a decision tree based algorithm. We chose it as
an alternative classifier algorithm, because we wanted an
algorithm to reflect the process of building the ground truth
dataset described earlier. In particular, during the process
of manually labeling items from Social Media we noticed
that we could almost instantly tell whether a given social
item was relevant to landslide as a natural disaster or not.
There were several common relevant and irrelevant topics
discussed in Social Media that were easy to spot due to
the use of specific words. Each time a particular word was
used we could predict with high probability the label of
the whole text. Hence, our hypothesis was that a decision
tree based algorithm could predict accurate labels based on



the thresholds of the relevance of terms to the concepts
represented as features.

The following table contains classifications results of the
evaluation dataset using a 10-fold cross validation approach
- see Table II.

C. Preliminary Landslide Detection Results

In addition to the seismic feed described above, USGS
provides a variety of other data, including a continually
updated list of landslide events reported by other reputable
sources7. This list contains links to articles describing land-
slide events as well as the dates when they were posted.
In December 2014 USGS listed 72 such links. LITMUS
detected 71 out of 72 events. There was only one event
reported by USGS that LITMUS did not detect, namely:
“Landslides Impede the Movement of Traffic in Two Direc-
tions in Bulgaria’s Smolyan Region” posted on December
4th8. It is a rather minor local event, which explains why
it did not receive much attention in Twitter, Instagram or
YouTube.

During the same evaluation period LITMUS also detected
238 landslide locations unreported by USGS. The next
section evaluates location estimation based on clustering
composition and computes the actual number of detected,
but unreported events, which is smaller than 238.

D. Evaluation of Location Estimation based on Clustering
Composition

The next table contains the results of location estimation
- see Table III. The CoreNLP library detected 684 distinct
locations based on Social Media texts from the evaluation
dataset. Cell-based approach mapped these locations to 539
cells. Semantic clustering removed 5.5% of outlier locations
and Euclidean clustering reduced the total number of loca-
tions to 493.

Based on the final set of locations generated by the
clustering composition approach the actual number of the
detected events that were unreported by the authoritative
source is equal to 190 instead of 238. This represents a 20%
improvement in location estimation due to our clustering
composition approach.

V. RELATED WORK

Recent research in Natural Language Processing has
found ESA to be successful for text classification. [14]
used ESA to find the semantic relatedness between German
Words using German-Language Wikipedia and found it to be
superior for judging semantic relatedness of words compared
to a system based on the German version of WordNet
(GermaNet). [15] found approaches based on ESA to per-
form better than those that are solely based on hyperlinks.
However, the stock algorithm for ESA relies heavily on

7http://landslides.usgs.gov/recent/
8http://www.focus-fen.net/news/2014/12/04/356314/

leveraging existing knowledge of Wikipedia, which is very
time-consuming and parts of it may be irrelevant for our
purpose. Our implementation of ESA is augmented such
that instead of using all Wikipedia concepts, we use top
concepts extracted implicitly from our dataset. This allows
us to classify rapidly without necessarily having to make
a large external repository of knowledge tractable first,
while leveraging the capabilities of ESA as a superior text
classifier.

Cell based approach to identify clusters in tweets and
other social media items originating from a geo-location has
been used in research in the past. In the context of Twitter,
less than 0.42% of tweets are geo referenced [3]. Thus,
[16] attempted to assign geo-coordinates to non-geo tagged
tweets to increase the chance of finding localized events.
Then, they searched for geo-terms and counted the number
of key terms that co-occur in different tweets within a short
amount of time to detect a theme. [17] used cell-based
approach to cluster tweets into geographical boundaries to
detect unusual geo-social events. Other works like [18]
extended this idea to detecting events in real-time from a
Twitter stream and to track the evolution of such events over
time. However, their work does not explore the application
of cell-based approach of integrating multiple sources to
detect natural disasters. Also, they do not perform very well
in situations when there are multiple geo-terms within the
same text. Our approach for geo-tagging applies semantic
clustering to remove location outliers followed by Euclidean
clustering to group related incidents to make sure we do not
report the same event multiple times.

Many researchers have explored the use of social media
to detect events, such as natural disasters. Guy, et al. [19]
introduced TED (Twitter Earthquake Detector) that examines
data from social networks and delivers hazard information
to the public based on the amount of interest in a particular
earthquake. Sakaki, et al. [1] proposed an algorithm to mon-
itor tweets and detect earthquake events by considering each
Twitter user as a sensor. Our system LITMUS is based on a
multi-service composition approach that combines data from
both physical and social information services - see [9], [5]
for more information. Furthermore, this work is a refinement
of LITMUS that focuses on improving classification and
location estimation results.

VI. CONCLUSION

Real-time disaster detection based on Social Media faces
multiple critical challenges including filtering out noise that
is present in majority of items from Social Media as well
as estimating locations of the events based on the filtered
items. In this paper we describe two novel techniques that we
implemented to improve the quality of landslide detection
service called LITMUS. To rapidly classify items from
Social Media as either relevant or irrelevant to landslide
as a natural disaster, we augment ESA classification by



extracting a subset of Wikipedia concepts to be used as
classification features using a clustering algorithm, such as
K-means. Then we estimate locations of the events described
by the classified items using a composition of clustering
algorithms, namely semantic clustering to remove location
outliers followed by Euclidian clustering to avoid reporting
separate instances of the same event multiple times. Our
experiments demonstrate that this approach not only helps
to remove noise rapidly, but also improves the quality of
location estimation of the detected events.

During our work on this project we noticed that Social
Media users often discuss past events, especially if the dam-
age or affected areas were substantial. For example, many
months after Typhoon Haiyan tore through the Philippines,
users still discussed it on Social Media as it still resonated
with them. As we are developing an automated notification
system that people and organizations can subscribe to in
order to receive real-time information on detected landslides,
we want to make sure that LITMUS can distinguish previous
events from the new ones. Finally, we hope that comprehen-
sive and accurate real-time information about disaster events
can be useful to various communities, including government
agencies and general public, which is why LITMUS is
live and openly accessible for continued evaluation and
improvement of the system9.
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