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Abstract—Social media have been used in the detection and
management of natural hazards such as earthquakes. However,
disasters often lead to other kinds of disasters, forming multi-
hazards. Landslide is an illustrative example of a multi-
hazard, which may be caused by earthquakes, rainfalls, water
erosion, among other reasons. Detecting such multi-hazards
is a significant challenge, since physical sensors designed for
specific disasters are insufficient for multi-hazards. We describe
LITMUS — a landslide detection service based on a multi-
service composition approach that combines data from both
physical and social information services by filtering and then
joining the information flow from those services based on
their spatiotemporal features. Our results show that with such
approach LITMUS detects 25 out of 27 landslides reported
by USGS in December and 40 more landslides unreported
by USGS. Also, LITMUS provides a live demonstration that
displays results on a web map.

Keywords-landslide detection service; multi-service composi-
tion; social media; physical sensors; event detection

I. INTRODUCTION

The detection of natural disasters is a significant and
non-trivial problem. A traditional method relies on ded-
icated physical sensors to detect specific disasters, e.g.,
using seismometers for earthquakes. However, there are few
physical sensors for the detection of multi-hazards such as
landslides, which have multiple causes (earthquakes and
rainfalls, among others) and happen in a chain of events.
A more recent method explores the big data from social
information services such as Twitter data streams function-
ing as social sensors [1]. High expectations have been placed
on social sensors, since physical sensors (e.g., seismometers)
are specialized for specific disasters. But despite some initial
successes, social sensors have met serious limitations due to
the big noise in big data generated by social sensors. For
example, Twitter filter for the word “landslide” gets more
tweets on the 70’s rock song “Landslide” [2] than landslide
disasters that involve soil movement.

In this paper, we describe LITMUS — a landslide detec-
tion service that is based on a multi-service composition ap-
proach to the detection of landslides, a representative multi-
hazard. Instead of trying to refine the precision and recall
of event detection in each one of the physical and social in-

formation services1, LITMUS composes information from a
variety of sensor networks. The information services include
both physical sensors (e.g., seismometers for earthquakes
and weather satellites for rainfalls) and social sensors (e.g.,
Twitter and YouTube). Instead of trying to optimize the
filtering process for each social sensor in isolation, LITMUS
uses state-of-art filters for each social sensor, and then adopts
geo-tagging to integrate the reported events from all physical
and social sensors that refer to the same geo-location. Our
work shows that with such integration LITMUS achieves
better landslide detection when compared to an authoritative
source.

LITMUS is one of the few works that makes use of the
composition of multiple heterogeneous information services.
It is not tied to disaster detection and can be applied to other
application areas involving service composition. This work
presents a generic approach to the problem of composition
of multiple heterogeneous information services and uses
landslide detection as an illustrative example. Traditional
approach to the composition of web services makes strong
assumptions about services, which it then uses to select
services when composing a new service, such as quality of
service [3] or service license compatibility [4]. In practice,
the real world services do not satisfy such assumptions. The
assumption we make in our work is that more information
services should provide a more solid result and we demon-
strate that it is the case with LITMUS.

The rest of the paper is organized as follows. Section II
provides a brief overview of the landslide detection service
and its components, Section III introduces the supported
physical and social information services, and Section IV
describes implementation details of each system component.
In Section V we present an evaluation of landslide detection
using real data and compare the results generated by LIT-
MUS with an authoritative source. We summarize related
work in Section VII and conclude the paper in Section VIII.

II. FRAMEWORK OVERVIEW

A. System Requirements
Web service LITMUS was designed to detect landslides

based on a multi-service composition approach that com-

1Throughout this paper the terms ”information service” and ”sensor” will
be used interchangeably.



bines data from physical and social information services.
Physical services should include earthquake and rainfall real-
time feeds as possible causes of landslides. LITMUS should
also support various social information services, which we
expect to help detect landslides. However, the data from
the social services must be filtered as they often contain
a lot of noise. The system should also adopt geo-tagging
to integrate the reported events from all physical and social
sensors that refer to the same geo-location. Finally, a web
client was designed to demonstrate LITMUS functionality
by displaying detected landslides on a web map.

B. Implementation Overview

Based on the requirements described above, we imple-
mented 3 independent components that perform filtering, in-
tegration and semantics-aware detection shown in Figure 1.
The Filtering component downloads the data from social and
physical sensors and filters out noise from social sensors.
The Integration component combines the filtered data from
social sensors with the data from physical sensors based on
a Bayesian model integration strategy to generate a list of
potential landslide locations. The last component performs
semantics-aware detection of landslides by grouping loca-
tions related to the same event and excluding the results
that are not current.
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Figure 1. Overview of LITMUS Framework

LITMUS provides access to its resources via a web
service. This web service is implemented in a represen-
tational state transfer (REST) style [5]. The architectural
properties of this style are driven by several constraints,
including client-server architecture and stateless communi-

cation. Client-server architecture ensures separation of con-
cerns between clients and servers. This means, for example,
that clients are not concerned with data storage, which is
handled by servers. Servers are not concerned with the user
interface or user state. The client-server interaction is further
constrained by stateless communication, which means that
no client context is stored on the server and that each client
request contains all necessary information to be executed by
the server. In addition to the described constraints, the central
principle in REST is support for resources that are sources
of information provided by the web service. Each resource
is referenced with a global identifier, such as URI. In our
landslide detection service the resources are the physical
sensor feeds, the raw social feeds that are downloaded, the
filtered social feeds that are processed by the system and the
resulting feed of detected landslides as shown in Figure 1
in the web service component.

We implemented a web service demonstration consuming
the resources provided by LITMUS, which is located in
the GRAIT-DM portal accessible at [6]. GRAIT-DM is a
SAVI project for Global Research on Applying Information
Technology to support Effective Disaster Management.

III. PHYSICAL AND SOCIAL INFORMATION SERVICES

The physical information services supported by LITMUS
do not provide information about landslides directly, but they
provide reports about other kinds of disasters, which may be
possible causes of landslides. In particular, we use a real-
time earthquake activity feed from the US Geological Survey
(USGS) agency [7]. This feed is updated every minute and
provides information about earthquakes of various magni-
tute. For this paper we collect data on earthquakes of 2.5
magnitude and higher. The data is provided in a convenient
GeoJSON format, which among other things provides time,
magnitude, latitude, longitude, name of the place and ID,
which is used to avoid duplicate records in the system.

Another physical information service supported by LIT-
MUS is provided by the Tropical Rainfall Measuring Mis-
sion (TRMM) [8], which is a joint project between NASA
and the Japan Aerospace Exploration Agency (JAXA). This
project generates reports based on the satellite data of the
areas on the planet that have experienced rainfalls within the
past one, three and seven days. The reports are provided in
multiple formats, including reports in a uniform manner on
the project’s web page, from which we parse and extract the
rainfalls data.

LITMUS also supports various social information ser-
vices, which we expect to help detect landslides, since
there are no physical sensors that would detect landslides
directly. Currently we support Twitter as an example of a
text based social network, YouTube as an example of a
video based social network and Instagram as an example
of an image based social network. Each of these social
information services is among the leading social networks



in their respective areas – 500 million tweets are posted per
day2, 55 million photos are sent per day3 and 100 hours of
videos are uploaded per minute4.

Next we will present the implementation details of each
system component.

IV. SYSTEM COMPONENTS

C1. Filtering Component
The C1. Filtering Component applies only to social in-

formation services. This is due to the fact that all informa-
tion regarding both earthquakes and rainfalls is considered
relevant for landslide detection purposes. Also, physical in-
formation services provide data with geo-coordinates, hence
there is no need to apply the geo-tagging processing either.

To remove noise from social sensors, we process the
downloaded data in a series of filtering steps. There are four
stages in this process that filter out items, which are neither
related to landslides (steps F1, F2 and F4) nor are useful to
LITMUS due to lack of geo-location (step F3).

F1. Filter based on search terms: Each social network
provides search API based on keywords for software devel-
opers. The system periodically downloads the data from each
social sensor based on “landslide” and “mudslide” keywords.
The period is currently set to 30 minutes, which can be
modified if necessary.

F2. Filter based on stop words & phrases: The social
information services require additional filtering as they con-
tain a lot of items unrelated to landslides and most of the
time they are not geo-tagged either. The following is a set
of frequent examples of unrelated items from the social
information services:

• “Landslide” song by Stevie Nicks from Fleetwood Mac:
“Climbed a mountain and I turned around, and I saw my
reflection in the snow-covered hills, and the landslide
brought me down. -FleetwoodMac”

• Used as an adjective describing an overwhelming ma-
jority of votes or victory: “Robert Mugabe’s party
claims landslide victory in Zimbabwe’s key election as
... - Daily Mail http://t.co/Hf4sVU3E8F”

• Lyrics from “Bohemian Rhapsody” by Queen: “Caught
in a landslide, no escape from reality...”

The first two items can be filtered out using a simple
exclusion rule based on the presence of stop words “Fleet-
woodMac” and “election”. The third item is filtered out
using another exclusion rule based on the presence of stop
phrases that currently include the lyrics of some popular
songs, e.g. “no escape from reality”.

But other unrelated to landslide items require a more
sophisticated algorithm, including filtering based on geo-
location and filtering based on penalized classification, de-
scribed next.

2https://about.twitter.com/company
3http://instagram.com/press/
4http://www.youtube.com/yt/press/

F3. Filter based on geo-location: To detect landslides
within a particular period, we need to determine their lo-
cations. The data from the physical sensors already contains
geo-coordinates. However, the data from the social sensors
is usually not geo-tagged although each social network
provides support for users to disclose their location. So, if
an item has not been geo-tagged already, then we suggest
to look for mentions of place names that refer to locations
of landslides in the item’s text.

For details of the geo-tagging algorithm used in LITMUS
we refer the reader to [9]. Next we will describe the changes
that we made in this algorithm.

The geo-tagging algorithm extracts geographical terms
(geo-terms) from incoming messages and assigns geo-
coordinates to each geo-term using a gazetteer, which is a
dictionary that maps places to geo-coordinates. In our system
we use a public gazetteer data from the GeoNames database
that covers all countries and contains over 10 million
places [10]. Our geo-tagging algorithm uses a subset of this
data, namely 448k places. This subset includes countries,
administrative divisions of countries of first to fourth orders,
cities with population greater than 1,000 people and islands.
In the future we plan to increase this subset by including
even more detailed places.

Some news sources mentioned in social media data,
such as “Boston Globe” or “Jamaica Observer”, contain
valid geo-terms which must be removed from consideration
by the geo-tagging algorithm; otherwise it would return
incorrect results. That is why LITMUS maintains a list of
major news sources, including “Boston Globe” and “Ja-
maica Observer”. Consider the following tweet: “Boston
Globe - Typhoon, mudslides kill 14 in Japan; 50 missing
http://t.co/nEUbk60Pzl.” “Boston” is positioned closer to the
landslide keyword “mudslides” than “Japan”, however it is
a part of the “Boston Globe” news source that LITMUS
automatically removes from consideration, such that the
correctly extracted geo-term is “Japan”.

F4. Filter based on classification: Majority of items
returned by social sensors are not relevant to landslides, even
though they contain landslide keywords and valid geo-terms.
The following are examples of irrelevant items with respect
to landslide disasters that contain valid geo-terms:

• Extracted geo-term “California”: “Laying on a landslide
with a bag of California to smoke.”

• Extracted geo-term “New York City”: “Lupica: As
Bill de Blasio takes the mayoralty of New York
City, let’s not forget Chris Christie’s landslide vi
http://t.co/0CoR1zQY55”

To filter out such irrelevant items LITMUS employs
machine learning binary classification, which automatically
labels each item as either relevant or irrelevant based on a
classifier model built from a training set containing labeled
items. This method, however, generates both correct and in-
correct labels. For successful labeling we propose to convert



the filtering problem of each item to the filtering problem of
landslide locations, i.e. geo-terms. In most cases a particular
geo-term is mentioned in multiple incoming items from
social sensors. Each social item is labeled by a machine
learning classifier, so there are multiple classification results
for each geo-term. Although this method generates both
correct and incorrect labels for a particular geo-term, but
on average it provides more correct than incorrect labels.
The idea of penalized classification uses this heuristics to
improve the results of classification by accepting the label
assigned to the majority of items for each geo-term and only
considering locations whose majority label is positive.

C2. Integration Component

To generate a list of potential landslide locations, LIT-
MUS combines the data from physical information services
with filtered and geo-tagged data from social information
services. This is a two stage process, where a grid-based
landslide location estimation is followed by an integration
of results from multiple services.

To estimate landslide locations, we propose to represent
the surface of the Earth as a grid of cells. Each geo-tagged
item is mapped to a cell in this grid based on the item’s
coordinates. After all items are mapped to cells in this grid,
the items in each non-empty cell are used for computing an
integrated landslide score. The size of the cells is equal to 2.5
minutes in both latitude and longitude, which corresponds
to the resolution of the Global Landslide Hazard Distribu-
tion [11] that we plan to add as an additional physical sensor
to the system. This is the maximum resolution supported in
LITMUS. The actual resolution is driven by the precision
of the geo-tagging algorithm described earlier.

After mapping the items from each sensor to cells in
this grid, which represent potential landslide locations, we
calculate the probability of landslide occurrence in location
cells based on a Bayesian model integration strategy. Here
is the description of this strategy. We use a subscript i to
distinguish different sensors. Suppose we have a cell x and
ω is the class associated with x, either being true or false.
Then, assuming a hidden variable Z for an event to select
one sensor, a probability for a class ω given x, P (ω|x), can
be expressed as a marginal probability of a joint probability
of Z and ω:

P (ω|x) =
∑
i

P (ω,Zi|x) =
∑
i

P (ω|Zi, x)P (Zi|x)

(1)
Here, we use external knowledge P (Zi|x) to express

each sensor’s confidence given x. For instance, if a certain
sensor becomes unavailable, the corresponding P (Zi|x) will
be zero. Also one could assign a large probability for the
corresponding P (Zi|x) if one sensor dominates over other
sensors.

In our experiment, we use prior F-measure R from the
August data as the confidence for each sensor since F-
measure provides a balance between precision and recall,
namely F -measure = 2 ∗ precision∗recall

precision+recall . We use the
August data in our experiments, because there were many
landslides reported by USGS during this month, so the data
collected during this month is representative. To generate the
results in the range from 0 to 1, we normalize the values
of F-measure into a scale between 0 and 1 first. Taking all
items from each sensor into account, the formula will be
further converted into the following format:

P (ω|x) =
∑
i

Ri

∑
j

POSx
ij −

∑
j

NEGx
ij −

∑
j

STOP x
ij∑

i

Nx
i

(2)
Here, Ri denotes the normalized prior F-measure of sen-

sor i from historic data. POSx
ij denotes positively classified

items from sensor i in cell x, NEGx
ij denotes negatively

classified items from sensor i in cell x, STOP x
ij denotes

the items from sensor i in cell x that have been filtered out
using stop words and stop phrases, and Nx

i is a total number
of items from sensor i in cell x.

C3. Semantics-Aware Detection Component

The actual number of landslides is usually less than a
total number of potential landslide locations returned by
the Integration component. Some of the potential landslide
locations may be referring to the same event. For example,
this may happen when users refer to the same event by using
geo-terms of different level of detail. Consider the following
tweets that describe a landslide, which occurred in Italy in
December:

• Extracted geo-term “italy”: “Giant craters were
ripped out of roads in Italy and homes and shops
sank into the ground after a major landslide:
http://t.co/JZ6l63vXLH”

• Extracted geo-term “montescaglioso”: “VIDEO: Land-
slide rips apart Italy roads: Heavy rains and floods cause
a powerful landslide in the southern Italian town of
Montescaglioso.”

Both geo-terms extracted from these tweets are valid, but
they describe the same event, which should be correctly
detected by the Semantics-Aware Detection component.
Another possible scenario of having multiple geo-terms
describing the same event can be described by the following
tweets:

• Extracted geo-term “wadhurst”: “Christmas come early
thanks to #southeastern, the bad santa of train services.
Landslide at Wadhurst has block line. Working from
home.”

• Extracted geo-term “hastings”: “Train delayed due to
landslide. That’s a first for the Hastings line.”



F1.Filter based on F2.Filter based on F3.Filter based on F4.Filter based on
Social Sensors search terms stop words & phrases geo-location classification
Twitter 45391 24993 7879 2815
Instagram 1418 1263 308 15
YouTube 4890 3936 557 318

Table I
OVERVIEW OF FILTERING RESULTS

F1.Filter based on F2.Filter based on F3.Filter based on F4.Filter based on
Metrics search terms stop words & phrases geo-location classification

Signal-to-Noise Ratio 0.05 0.10 0.44 1.90
Information Gain - 0.028 0.121 0.197

Table II
EVALUATION RESULTS OF FILTERING COMPONENT

These two landslide locations are actually related as
shown in the following tweet:

• Extracted geo-terms “wadhurst” and “hastings”: “Avoid
the trains on the Hastings line folks. Word is there’s
been a landslide on the line near #Wadhurst #UKstorm”

Semantics-Aware Detection component must also handle
temporal issues by excluding results that refer to the past or
future events:

• “The Kedarnath disaster in Uttarakhand, India in June
remains the worst landslide accident of 2013 to date
http://t.co/Mf31ztjwQ2”

Even though the year matched the year of the evaluation
period, the month did not, hence the landslide locations
extracted from this message must be excluded from the final
result.

The Semantics-Aware Detection component is currently
semi-automated. LITMUS is able to group landslide loca-
tions that were referred to in the same message and also
to exclude messages containing references to either past or
future years. We plan to improve the performance of this
component as part of future work.

V. EVALUATION USING REAL DATA

To evaluate the performance of our landslide detection
service we designed three sets of experiments. We start with
evaluating the performance of the filtering process of social
information services. Next we compare the effectiveness of
three multi-service composition strategies for landslide de-
tection. The final experiment provides the detection compar-
ison results between LITMUS and an authoritative source.

A. Evaluation of Filtering Component

In this experiment, we view different social media as our
social sensors and process the data from these sensors in a
series of filtering steps. For simplicity, we only focus on
the textual description of each item during filtering. For
Instagram, the textual description is an image’s caption text.
For YouTube, the textual description is a concatenation of
a video’s title and description. And for Twitter, the textual

description is the text of a tweet itself. We use December
2013 as our evaluation period. Table I shows the total
number of items downloaded during this month. For each
filtering step, Signal and Total indicate the remaining items
after the filtering steps, where Signal is a number of items
from social sensors that are relevant to landslide detection
and Total is a total number of items from social sensors.

There are two metrics that we use to evaluate the perfor-
mance of the filtering steps in Table II, namely Signal-to-
Noise Ratio (SNR), and Information Gain (IG), where for
each filtering step i:

SNRi =
Signali
Noisei

=
Signali

Totali − Signali
(3)

Here, Signali is the number of relevant items remaining in
step i, Totali is the number of all items remaining in step
i.

IGi(Ti−1, ai) = H(Ti−1)−H(Ti−1|ai) (4)

Here, we consider the filtering process as a binary classifica-
tion problem which has two classes: relevant and irrelevant.
Ti−1 denotes a set of training examples before step i. ai
is the attribute (filtering condition) we used in step i. H
denotes information entropy. The filtering conditions in the
process are considered as attributes. For instance, the F2
filter based on stop words and phrases will be converted
into a classifier based on a boolean attribute whether an item
contains stop words and phrases. Information gain measures
the relevance of attributes.

It can be seen from Table II that SNR is improving after
each filtering step and eventually exceeds 1. Information
gain ranks the relevance of the filtering conditions, which
shows the rank of filters in decreasing order: filter based on
classification, filter based on geo-location, and filter based
on stop words and phrases. For F1, we cannot calculate the
values of Information Gain, since we are not able to know
how many items there are in filtered out data and what the
prior information entropy is.



B. Evaluation of Integration Component
For comparison purposes, we introduce two major base-

lines - OR and AND integration strategies and compare
them with the proposed Bayesian model strategy. We have
five sensors in total, including social sensors (Twitter, Insta-
gram, and YouTube) and physical sensors (earthquakes and
rainfalls). Considering that each sensor has one vote to a
particular cell, the cell will obtain one or zero votes from
each sensor. For OR integration strategy, we grant equal
weight to five sensors. And we obtain the decision (whether
a landslide happened or not) by combining the votes using
boolean operation OR among five sensors. For social and
physical AND integration strategy, we use boolean operation
OR to combine the votes from social sensors and physical
sensors separately first. And then we calculate the combined
result by applying boolean operation AND between votes
from social and physical sensors. For instance, if the votes
from five sensors (Twitter, Instagram, YouTube, earthquakes,
and rainfalls) are 1,1,0,0, and 0, the OR strategy will give a
1 in the end, but the social AND physical strategy will give
a 0 in the integrated score.

We present the results of comparison between integration
strategies in Figure 2. This figure shows that the Bayesian
model strategy has 71% precision, 82% recall and 77% F-
measure. The OR strategy has the highest recall at 100%,
but also the lowest precision at 2%. The AND strategy
shows improvement compared to the OR strategy as its F-
measure is higher, but the Bayesian strategy shows the best
performance overall.

0

0.25

0.5

0.75

1

OR Social AND Physical Bayesian Model

Precision Recall F-measure

Figure 2. Comparison of Integration Strategies

C. Evaluation of Semantics-Aware Detection Component
In addition to a real-time seismic feed, USGS also

presents a continually updated list of landslides as reported
by other reputable sources, including Dailymail.co.uk, Glob-
alPost, HeraldNet, and Xinhuanet. In this experiment we

compare the landslides provided by this authoritative source
in December [12] versus the landslides detected by LITMUS
during the same month — see Figure 3 for the results of
this comparison. LITMUS was able to detect 25 out of 27
landslides reported by USGS. The 2 missed events were
in Buncombe County, NC and Watchung, NJ. Both events
affected very small areas, which is the reason why they did
not attract significant public interests in social media and
were missed by the system. In addition to the overlapping
events detected by both LITMUS and USGS, our system
managed to find 40 more landslide locations in December
that were unreported by USGS. This is due to the fact that
the USGS results are based on news sources, which can only
report a limited amount of information. Whereas LITMUS
employs multiple information services, plus the landslide
detection process is automated, so we can reasonably claim
the comprehensiveness of its results.

Figure 3. Landslide Detection by LITMUS vs USGS

VI. WEB SERVICE DEMONSTRATION

We developed a live demonstration [6] that consumes the
resources provided by the web service. This web application
shows live feeds from each resource described in the paper.
The data from all feeds is displayed on a Google Map, which
can be set to either Map or Satellite view by a user. A user
can view detailed information about items from each feed —
see Figure 4 for a detailed view of an item from a YouTube
feed.

A separate feed shows a list of detected landslides that
are a result of the multi-service analysis based on the
Bayesian model integration strategy. A user can also view
detailed information about all items that were used to make
a decision regarding a landslide in each location — see
Figure 5.

VII. RELATED WORK

Many researchers have explored the use of social media
to detect events and provide assistance, including TED



Figure 4. Example of video from the YouTube feed

Figure 5. Example details of a detected landslide

project [13], and social media analysis [1], [14]. Supporting
techniques for these systems include topic detection [15],
event detection [16], and alerts [17]. Besides Twitter, some
studies targeted search engines, news, and blogs by ana-
lyzing spatiotemporal patterns [18], [19], [20]. The pre-
vious work on the integration of multiple data sources
has been largely application-specific, for example, biostatis-
tics [21], bioinformatics [22], and geographic information
systems [23]. Supporting techniques include location esti-
mation [24], and text categorization [27], [28], [29]. Our
work continues development of LITMUS [9] by creating
a landslide information service based on a multi-service
composition approach that combines data from both physical
and social information services.

Multi-service composition requires systems that can man-
age complex, heterogeneous, dynamic and distributed data,
which may be quite large. Milanovic et al. [30] provided a
survey of existing proposals for web service composition.
Constantinescu et al. [31] presented an algorithm that sup-
ports dynamic service composition based on partial matches
of input/output types. Truong et al. [32] proposed informa-

tion quality metrics for identifying and reducing irrelevant
information about web services. Service composition in
LITMUS is static rather than dynamic, because the data from
all of our sensor information services is downloaded at each
cycle. As the number of information services supported by
LITMUS grows, we plan to add support for dynamic service
composition and execution.

Another important aspect for disaster detection systems
is situational awareness. The challenge for social sensors
is that users may use alias or location names in different
granularities in messages resulting in inaccurate location
information. Multiple studies have been done on location
estimation for information from social networks based on
content of tweets, e.g. [24]. [33] demonstrated a rapid
unsupervised extraction of locations references from tweets
using an indexed gazetteer. Our system also employs a
public gazetteer and adopts a grid-based approach with
customizable granularities in location estimation.

VIII. CONCLUSION

Multi-hazards are disasters with causally chained events
such as the 2011 Tohoku earthquake triggering tsunami,
which caused the Fukushima nuclear disaster, and landslides,
often caused by earthquakes or rainfalls. Detecting such
multi-hazards is a significant challenge, since physical sen-
sors designed for specific disasters are insufficient for multi-
hazards. As promising alternatives [1], social information
services have difficulties with filtering the big noise in
the big data being generated. We show that multi-service
composition approach, which combines data from both
physical and social information services, can improve the
precision and accuracy of multi-hazard detection when the
participating sensors are relatively independent of each other.

Applying this approach, we built a landslide detection
service called LITMUS, which composes physical infor-
mation services (USGS seismometers and TRMM satellite)
and social information services (Twitter, Instagram, and
YouTube). LITMUS provides a REST API for obtaining
its resources, including social and physical sensor feeds
and a list of detected landslides. A live demonstration [6]
is developed that consumes these resources to display the
results on a Google Map.

The effectiveness of landslide detection is evaluated using
real world data collected in December 2013. Individual
filtering results for each social sensor are provided followed
by the full integration of 5 sensors applying a modified
Bayesian model integration strategy that achieved 71% in
precision, 82% in recall and 77% in F-measure for landslide
detection, which is significantly better than the baseline
integration strategies. A comparison is performed against
an authoritative list compiled by USGS, which shows that
LITMUS detects 25 out of 27 reported events as well as 40
more events unreported by USGS in December.



Finally, the coverage of landslides detected by LITMUS
can be improved by supporting other languages in addition
to English. We are also interested in detecting other kinds
of events using LITMUS infrastructure, for example food
poisoning and flu. Furthermore, our future work will involve
an analysis of the image and video content as they contain
more information in addition to their textual representation.
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